An approximate solution for a mixed linear Volterra–Fredholm integral equation
نویسندگان
چکیده
منابع مشابه
Approximate solution to an integral equation with fixed singularity for a cruciform crack
A novel method for determining an approximate solution to an integral equation with fixed singularity is presented. This integral equation is encountered in solving a cruciform crack. On the basis of Taylor’s series for the unknown function, the integral equation can be transformed to a system of linear equations for the unknown and its derivatives when neglecting a sufficiently small quantity....
متن کاملApproximate solution of dual integral equations
We study dual integral equations which appear in formulation of the potential distribution of an electrified plate with mixed boundary conditions. These equations will be converted to a system of singular integral equations with Cauchy type kernels. Using Chebyshev polynomials, we propose a method to approximate the solution of Cauchy type singular integral equation which will ...
متن کاملApproximate Solution of Volterra-Fredholm Integral Equation with Hilbert Kernel
M. A. Abdou, Khamis I. Mohamed and A. S. Ismail, On the numerical solutions of Fredholm-Volterra integral equation, Appl. Math. Comp. 146, 713-728, (2003). M. A. Abdou, Khamis I. Mohamed and A. S. Ismail, Toeplitz Matrix and product Nystrom methods for solving the singular integral equation, Le Matematiche LVII-Fasc. I, 21-37, (2002). H. Brunner, On the numerical solution of nonlinear VolterraF...
متن کاملAn efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions
In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...
متن کاملProjected equation methods for approximate solution of large linear systems
We consider linear systems of equations and solution approximations derived by projection on a low-dimensional subspace. We propose stochastic iterative algorithms, based on simulation, which converge to the approximate solution and are suitable for very large-dimensional problems. The algorithms are extensions of recent approximate dynamic programming methods, known as temporal difference meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2012
ISSN: 0893-9659
DOI: 10.1016/j.aml.2012.02.019